Thursday, 4 September 2014

California Bill Nearly Torpedoed Bomber Bid

Competitions for Pentagon programs have always been cutthroat. But with fewer of them expected in the next decade, each single program is increasingly viewed as a must-win for top Pentagon contractors, driving them to be more creative in their push for a competitive advantage.
Up to 100 new bombers are needed to augment the 20 stealthy B-2s in the fleet today. Credit: Ted Carlson/Fotodynamics

So much so that bids don’t only center on a design’s technical prowess, system engineering and program management attributes. More and more, in a quest to get any edge possible, contractors are beefing up their lobbying efforts. And, some are proving better at this than others.
A case in point is how Northrop Grumman, one of the Pentagon’s top contractors, was politically outfoxed by rivals Boeing and Lockheed Martin, who temporarily scored a tax-incentive leg up in the duel to build stealthy, new bombers for the U.S. Air Force.
Owing to Lockheed Martin’s notoriously effective political prowess, the company nearly scored a half-billion in economic incentives from the California legislature, which could have translated to a commensurate discount in its team’s bid for the program, due to the Air Force shortly. Such an advantage could have tipped the scales in favor of the Boeing/Lockheed Martin design on price alone, sending Northrop Grumman into panic mode this summer. As the manufacturer of the stealthy B-2, Northrop Grumman views the bomber program as critical to its future as a top Pentagon airframer.
At issue was California law AB 2389, signed by Gov. Jerry Brown July 10, 2014. Lockheed Martin’s lobbyists quietly and successfully campaigned for the measure for a year. As a result, the law offered $420 million of incentives specifically to a “subcontractor” providing jobs for work on a special access program, clearly referring to the secretive bomber project. Lockheed Martin is the subcontractor to Boeing on the bomber bid. Northrop Grumman is proposing a design as a prime contractor, excluding it from the potential tax advantages offered in the legislative package.
This put Northrop in an embarrassing pickle, as the company was blindsided by legislators from its own back yard. The measure was sponsored in the lower house by Democrat Assemblyman Steve Fox and also Republican state Sen. Steve Knight, both from the Palmdale, area. Palmale is home to the Air Force’s secretive Plant 42, where both Lockheed Martin and Northrop Grumman have operations; Northrop’s have grown substantially in recent years likely to support its work building the Air Force’s secret, stealthy RQ-180 surveillance aircraft.
“We invited all of the players involved. Northrop did not take us up on this,” said one source in the California legislature, adding that Lockheed’s engagement was swift and decisive.
Lockheed had pounced on the idea that Northrop might not build the bomber if it won in California, but Northrop officials say they do intend to build it in Palmdale, a stone’s throw from Lockheed Martin’s famed Skunk Works facility.
Time, however, was of the essence. The Air Force announced that its classified request for proposals (RFP) for the new, stealthy bomber was released July 10. Typically, proposals are due about 90 days from issuance of an RFP, though service spokesman Ed Gulick declined to say when they would be due. This program is shrouded in secrecy and officials have been selectively citing classification in providing scant public details. The service plans to buy 80-100 bombers, each costing less than $550 million to build, making the stakes high for contractors in this duel. But bottom line, Northrop needed quick legislative relief in order to include the same discount in its bomber proposal and meet the RFP deadline.
Northrop, as a result, took a page out of Lockheed’s book and set up camp for weeks lobbying legislators in California for access to the same advantages offered only to Lockheed, as a subcontractor, in a separate bill. At the 11th hour of the legislative session, the governor signed a bill offering the same deal to Northrop.
“Northrop Grumman is pleased the California legislature passed legislation that supports aerospace workers in the state. This is a victory for fairness, the aerospace industry and all Californians,” said Tim Paynter, a company spokesman.
The measure—passed Aug. 14 by the legislature on the eve of its recess—levels the playing field with the tax package by applying the benefits equally to prime and subcontractors and averting what could have been yet another thorny Air Force procurement train wreck. The service has been on the defensive since its clumsy handling of the Combat Search and Rescue replacement helicopter and Boeing KC‑135 replacement programs.
Northrop supporters claimed that applying such large tax credits to one contractor and not another would have been unfair. And though company officials would not say whether they were exploring legal options in the event the tax incentive package wasn’t applied to its own bid, it is highly likely Northrop would have pursued a remedy in court.
Underscoring what a near miss this was for Northrop, top Pentagon officials had a different view of the issue, signaling that Northrop Grumman could have been left out in the cold without legislative help from Sacramento. “The fact that one company receives a tax break from the state in which it is situated is possibly a competitive advantage for that company, but it is not an unfair competitive advantage because it was not given to that company by the Air Force,” says Maureen Schumann, a Pentagon spokeswoman. “It does not have to be equalized. The general rule is that an agency is not required to equalize the competitive advantage a firm might enjoy by virtue of its own particular circumstances so long as the advantage is not the result of preference or unfair action by the agency.” 

Japan Plans Technology Program For Next Airliner

As flight-test aircraft of Japan’s first jet airliner take shape at Nagoya, the country’s technology ministry is laying out a plan for a second, part of a goal to raise the national industry to the importance of Japanese automobile manufacturing.
The second aircraft would not appear until around 2040, about 23 years after the Mitsubishi Aircraft MRJ regional jet is due to enter service, but it would incorporate an abundance of advanced Japanese technology and even use a Japanese engine.
The relatively small size of the Japanese aeronautics sector has long seemed anomalous, especially since the country has so many industries that have proven themselves in high technology, precision fabrication, outstanding product reliability and low cost. But instead of building Japanese aircraft, the sector builds mainly high-quality parts for foreign aircraft, especially Boeing airliners.

Aerospace accounts for 1.4% of the economies of the U.S. and European countries but only 0.29% of Japan’s, says the ministry, whose full name is Ministry of Education, Culture, Sports, Science and Technology. Whereas Japanese companies satisfy 23% of the world’s automobile demand, the country accounts for only 4% of the global aerospace industry. The ministry wants to raise that to 20% within 20 years. Since it expects global aircraft production to double in that time, the target implies growth by a factor of 10 over the same period, or 12% a year.
By 2040 Japan should achieve significant leads over other countries in safety, noise, emissions, and economy, which the ministry says are necessary for the country to develop its own commercial aircraft or to initiate international developments.
As a first step, it calls for development of a range of technologies it classifies as “relatively advanced” by 2020: turbulence detection by laser radar, lighter structures, a light, highly efficient composite engine fan, an improved low-pressure turbine, drag reductions and quieter flaps, slats and landing gear. Low aerodynamic noise on takeoff and landing is already a key feature of the MRJ, but Japanese engineers evidently have more ideas, because the ministry proposes flight-tests by around the end of the decade.
Following close behind would be “high-impact” technologies for development by 2025, including a “better” composite wing and a quiet engine with a compact core. The engine program would include a high-pressure turbine that should be tested on an MRJ around 2025. Japan is weak in high-pressure turbine technology, the ministry says, although many countries with aspirations in aircraft propulsion suffer from the same problem.
Before the ministry issued its report on Aug. 19, the Yomiuri newspaper said the government would back development by 2030 of an airliner with fewer than 230 seats, apparently something like the Boeing 757. The Nikkei newspaper reported on Aug. 27 that the ministry was considering either an aircraft of that size or another as big as the MRJ. But Japan has no concrete plan to develop another aircraft, says Shinji Suzuki, a Tokyo University professor closely involved in policy making. 
Japan’s success in other manufacturing processes, especially automotives, shows the country could play a larger role in global aerospace, says Suzuki. “Japan has a special potential to reduce production costs, such as [with the] Toyota Production System, Kaizen, and robot manufacturing systems. Those have been developed in the automobile industry and can be applied for the aircraft industry.”
The automobile industry offers a precedent for the rapid pace of production increases called for by the -ministry: Japan built 1 million vehicles in 1963 and 10 million in 1980. But the U.S. and European car makers of the 1960s and 1970s were probably a good deal more vulnerable to smart new competition than are Airbus and Boeing.
The supply of engineers is not a great challenge, says Suzuki. “Management skill and business experience will be more important to developing a larger commercial aircraft,” he says. “Japan is trying to acquire those skills through the MRJ business.”
Mitsubishi Heavy Industries, the chief shareholder of Mitsubishi Aircraft and manufacturer of the MRJ, has fitted the Pratt & Whitney PW1200 engines to the first flight-test MRJ. The first flight is due in the second quarter of 2015.
Japan Airlines (JAL) will be the fifth customer for the type, the carrier and Mitsubishi Aircraft announced on
Aug. 28. In July, U.S.-based Eastern Air Lines Group, which has not yet begun flying, signed a memorandum of understanding to order 20 MRJs. If that deal and JAL’s are confirmed, the program will have a backlog of 205 aircraft on order. 

The timing of deliveries to JAL was not disclosed. Mitsubishi Aircraft cannot have many early delivery positions available, because of slippage in airworthiness certification to 2017 from the originally planned late 2013. 

Opinion: Air Safety Challenges Require Constant Vigilance

The world’s flight safety community has been badly hurt in the last few weeks by accidents that took nearly 750 lives. In this unprecedented psychodrama, long before final investigation reports are completed, it is obvious that technical issues are not the only cause. At the same time, it would not make sense to solely accuse human factors; we all share responsibility in a wide-ranging loss of vigilance. Flight safety has never been better, but recent accidents have revealed unacceptable weaknesses, including a failure of threat and risk assessment and poor pilot training.
The worst case is the ill-fated Malaysia Airlines Flight 17 crash in Ukraine. This was not the first time that an airliner was hit by a surface-to-air missile. And this tragedy was not only related to aviation safety, or security.
Looking beyond the outraged comments, we don’t need the International Civil Aviation Organization, International Air Transport Association and other trade groups to express indignation or a lack of understanding. As the European Cockpit Association stressed in a strongly worded statement issued in late July: “In hindsight, flying civilian aircraft over an area where powerful anti-aircraft [missiles] capable of bringing down an airliner at cruising altitude are in active use is not acceptable; so the question is what went wrong and how do we fix it?”

Reading newspapers and watching television news programs was enough to make the point, without any help from intelligence experts or warning given by Notams. Airlines—all airlines—simply should strictly avoid flying over war zones. Such preventive measures make flight times longer and involve increased fuel consumption, but make sense. More than two decades ago, during the first Balkan war, Malaysia’s flights between Europe and Kuala Lumpur departed from the usual flight plan day after day, as did aircraft operated by other carriers. This time, apparently, operations managers were too accustomed to such dangers or underestimated the threat. Such behavior can be characterized as a loss of vigilance, inappropriate risk assessment, or a lack of common sense.
At the other end of the spectrum, the crash of a TransAsia Airways ATR 72-500 at Magong, Taiwan, in low visibility, reminds us of the true danger of non-precision approaches in bad weather. The airline’s in-house regulations were rapidly revised, visibility requirements raised and, in case of doubt, pilots encouraged to return to the airport or divert to another destination.
Swiftair’s MD-83, which was operating the Air Algerie flight that crashed in Mali, most probably was hit by thunderstorms, but in conditions that do not explain a fatal crash. The twinjet’s cockpit voice recorder was not working—a possible indication of poor maintenance—and an explanation for the loss of control could remain a mystery.
In other words, negligence is affecting flight safety, in sharp contrast with overall progress achieved in the past several years. This is disappointing, although it may not be a lasting trend, according to Bertrand de Courville. He is a newly retired Airbus A330captain and long was a member of Air France’s flight safety team. “We should not give too much importance to particular events,” he says, although he acknowledges risk management should be enhanced and stresses unclear trends and correlations between accident scenarios while acknowledging an erosion of risk awareness and safety commitment at all levels. In 2012, de Courville submitted similar comments to the European Commercial Aviation Safety Team, an analysis endorsed by the European Aviation Safety Agency.
Jean Pinet, a former Concorde test pilot and founder of Airbus Training, seeks to adopt a broader view. He believes flight safety is reaching cognitive and neurophysiologic limits. Worse than that, weaknesses identified over the years have been treated with rubber repair patches while the whole tire needed to be replaced, Pinet adds. He also agrees that flight safety efforts are suffering from a loss of vigilance.
In the same vein, Jean-Claude Buck, a retired Air France pilot and former head of the French civil aviation in-flight control team, expresses doubts about airline pilots’ training. On flights over war zones, he says the final decision on an aircraft’s flight path should remain with the captain and certainly should not be made by ground staff.
Remarkably, apart from the Malaysian tragedies, public opinion about air travel has not been severely troubled by the recent series of crashes. But, of course, that is no consolation.

Airports Reducing Wildlife Strike Risks




US Airways Flight 1549 introduced much of the non-aviation world to the hazards that birds pose to airplanes. But data gathered since the January 2009 day that the US Airways A320 lost power in both engines after plowing through a flock of Canada geese and was piloted safely down in New York’s Hudson River suggest that the accident boosted wildlife mitigation’s visibility within the industry as well.
Last year, the FAA’s wildlife strike database collected 11,315 strike reports—96% of them involving birds. In 2008, FAA collected 7,651 strike reports. While bird populations are climbing, the difference between the pre-2009 figures and today’s numbers is explained by an increase in something else: awareness.
Given that the FAA does not mandate strike reporting and requires airports to conduct wildlife assessments only if certain hazards are detected (although most have or plan to do them anyway), increased awareness is a good thing. Add in that the vast majority of airport wildlife mitigation is done with low-tech tactics that seem more at home at a backyard fireworks display than a modern airport, and the importance of grassroots buy-in becomes even clearer.

Commercial Crew Vehicle Choice Will Lead To Flight-Testing




NASA’s long-running push to find a commercial route for crews to the International Space Station takes a big step this week, with the selection of a company or companies to take the design work they have done with government seed money and move on into space. Call it a wild guess, but I anticipate we will all be watching crew capsule flight tests over the next few years. Two of the three contenders—theBoeing CST-100 and the SpaceX Dragon—are capsules, and previous funding decisions have favored those designs over Sierra Nevada’s Dream Chaser lifting body.
Even if NASA selects Dream Chaser for the Commercial Crew Transportation Capability phase of its public-private crew vehicle development project, the agency will need to flight-test its Orion crew capsule. Dream Chaser already has flown a free-flying glide test marred only by a landing gear failure after a successful approach and touchdown, and the company may tow it behind a C-17 for future tests in the atmosphere (AW&ST June 12, p. 31). In that sense, its flight-test regime up until launch to orbit will be similar to that of the space shuttle orbiter, which deployed the Enterprise atmospheric test article from a modified Boeing 747.
But testing requirements for capsules differ from those of the shuttle, which added ejection seats to the orbiter Columbia for John Young and Robert Crippen on its first spaceflight, and carried pilots on the Enterprise flights. The Dragon is already flying unmanned cargo missions to the ISS, and Boeing plans an unmanned Atlas V flight of its CST-100 capsule before sending a two-person crew to orbit.
All three commercial crew contenders have hired retired shuttle astronauts to oversee planning for flight-crew operations. At Boeing, Christopher J. Ferguson is director of crew and mission operations.
Ferguson, who commanded the final space shuttle mission—STS-135 on Atlantis in 2011—was a Navy test pilot before joining NASA, and flew the shuttle to space three times. He has been deeply involved in preparing his company’s commercial crew vehicle for flight-test. But unlike shuttle flight, CST‑100 pilotage will be largely autonomous.
The idea is to make it repeatable and safe, and you do that by employing a lot of autonomy, Ferguson says.
But capsule pilots won’t be sitting idly by while machines do all the work.
“We’ve been levied the requirement to ensure the pilot can take over at any time,” says Ferguson. “We will plan this mission for months in advance, right down to every translational maneuver, every rotational maneuver, when power-up events occur, when power-down events occur. We anticipate [unexpected occurrences] that may require us to sort of interrupt the autonomy, correct it, and then reengage the autonomy.”
Boeing maintains a cockpit simulator (see photo) at its commercial-crew facility in Houston, which has been upgraded using rapid-prototyping as the design is advanced. One area getting a lot of attention lately is how the vehicle-monitoring system in the Atlas V will trigger an abort to get the CST-100 and its crew safely away from a failing vehicle. Along with construction of a launchpad crew access tower that will include a slide-wire emergency escape system and an enclosed “white room” for ingress; the emergency detection system is one of the next steps in CST‑100’s development.
“For those time-to-criticality failures that are very short—rapidly degrading situation, loss of control—there will be an automatic signal,” Ferguson says. “You’ll exceed a redline inside the emergency detection box; it will send a signal to the CST-100 to initiate an abort.”
The capsule carries a pusher-type hypergolic-fuel abort system that can empty its tanks in about 5 sec., subjecting the crew to about 6g as it boosts the capsule away from a failing launch vehicle. If it isn’t used, the propellant remains available for maneuvering once the capsule reaches orbit. The mission control center also will be able to send a command-abort signal to the vehicle, and the crew will have its own abort control.
“We can enable all three, or perhaps go down to one,” Ferguson says. “But regardless, the range safety system always trumps the emergency detection system. We can never completely turn it off for obvious reasons.”
Following a pad-abort test at White Sands, New Mexico, by the end of 2016, the unmanned Operational Flight Test on an Atlas V is planned to dock autonomously with the ISS. The vehicle would remain at the station for two weeks under current plans, and then return to a dry-land touchdown on parachutes and airbags in a western desert landing zone. Results of that test would be incorporated into the first flight-test with a two-person crew—from Boeing and NASA—officially slated before the end of 2017.
However, while Boeing has not made a formal decision, John P. Mulholland, vice president and program manager of commercial programs for its space exploration unit, says it is unlikely the company will continue if it does not receive at least some funding in the upcoming contract. 

Shared: Ebola death toll exceeds 1,900:

The World Health Organization also said there were 3,500 confirmed or probable cases in Guinea, Sierra Leone and Liberia. http://bbc.in/1xdiD6y  

Rolls-Royce Details Advance And UltraFan Test Plan

A version of this article appears in the August 25 issue of Aviation Week & Space Technology.
Earlier this year Rolls-Royce took the unusual step of publicly laying out its strategic vision for developing a new series of large turbofans for the next decade and beyond. Now the company is beginning to detail the first steps it will take to turn this vision into reality.
The launch of its next-generation road map comes at a good time for the company. Buoyed by growing volumes of business in the widebody airliner market with its three-shaft Trent engine family, Rolls is in the midst of its biggest production ramp-up ever to support expanding fleets of Trent 1000-powered Boeing 787s and XWB-powered AirbusA350s. At the same time, it is developing the Trent variants for the later derivatives of both these airliners, as well as beginning work on the Trent 7000 for the newly launchedA330neo.
Banking on the notion espoused by President John F. Kennedy that “the time to repair the roof is when the Sun is shining,” Rolls is acting now to ensure its competitiveness for the next round of airliner developments from the end of the decade and beyond. Ric Parker, director of research and technology at Rolls, says that thanks to the A350 and 787 engine programs, “we are in an amazing position today.” At the American Institute of Aeronautics and Astronautics Joint Propulsion Conference in Cleveland in late July, Parker also noted that the company’s strategy closely monitors the point “where evolution gives up and revolution takes over.” For the near term, the plan remains focused on the former, and the next steps will therefore be based on two more evolutions of the well-proven three-shaft heritage. “At Rolls-Royce we say, ‘invent once and use many times,’” adds Parker.

Rolls-Royce’s fundamental product plan, as first unveiled in February (AW&ST March 3, p. 20), is a two-phase evolution from today’s Trent XWB. The first engine, the Advance, is aimed at entry into service around 2020 and will have a bypass ratio in excess of 11:1, overall pressure ratio of more than 60:1 and fuel-burn level at least 20% better than the current Trent 700. The second, more ambitious follow-on engine is called the UltraFan, which Rolls first revealed in concept form in early 2012 as part of NASA’s Environmentally Responsible Aviation (ERA) study with Lockheed Martin. The engine could be ready for service in 2025 and is targeted at fuel-burn at least 25% better than the Trent 700. UltraFan drives a variable-pitch fan through a gear system and is outlined with a 15:1 bypass ratio and overall pressure ratio of 70:1.
Step 1 of the evolution involves fundamentally changing the traditional architecture of the Trent core to off-load the work performed by the intermediate-pressure (IP) spool and split it more evenly with the high-pressure (HP) system. To understand the significance of this, it is useful to note the basic architectural differences between the Trent family and the competing two-shaft designs produced by General Electric and Pratt & Whitney. Unlike these two-shaft engines, in which the fan and low-pressure (LP) compressor are driven by the LP turbine, the fan alone is driven by the LP turbine in the Trent. In place of the conventional LP compressor, the three-shaft design has an IP compressor which is driven by an IP turbine. Both two- and three-shaft engines have similar high-pressure spools, though there are fewer stages in the three-shaft compressor and turbine.
In previous evolutions of the Trent, Rolls has grown engine capability by expanding the work done by the IP compressor and turbine. “As we grew the Trent family IP compressor, we grew the pressure ratio and gradually supercharged the engine, always keeping the high-pressure spool very similar,” says Alan Newby, Rolls commercial engines advanced projects chief engineer. “The big change from the core point of view is that the Advance reverses that, so we will put more on the high-pressure spool,” he adds. The new Rolls engine will have a relatively larger high-pressure compressor with up to 10 stages (compared to six on the Trent XWB) and a greater pressure ratio, and it will be driven by a two-stage turbine against the single-stage used today. At the same time, the IP compressor will shrink from the eight stages of today’s XWB to around four, while the IP turbine count will be cut to one from two stages.
The new configuration “provides a very lightly loaded high-pressure spool, which gives good efficiency and, more importantly, significant commonality with the follow-on core of the UltraFan,” says Newby. “So we are laying down an architecture which we think is enabling the future.” In addition, for the first time on any Rolls engine, Advance will have a lighter composite-titanium fan, composite fan casing and lighter LP turbine system.
Beyond Advance, the next big architectural change is the inclusion of a gear system to drive what Rolls believes will be a new generation of larger, higher-bypass-ratio fans, as well as the introduction of variable pitch fan blades and complete elimination of the LP turbine. The move effectively means the engine is no longer a true three-shaft design but rather a “two-and-a-half” configuration, notes Newby. However, Parker adds, “Even with three shafts, we still haven’t reached the tipping point where the weight and complexity of the gearbox outweighs the weight and complexity of lower-speed, lower-efficiency components. That’s primarily because we don’t have a low-speed booster on the fan shaft. Instead, we have an IP compressor that finds its own speed.”

Besides major architectural changes, both Advance and UltraFan will see the wholescale introduction of new technologies. In some cases these will be key enablers to the new configuration and in others they will help augment overall performance. “Arguably, the Advance is mainly about the core, though we are introducing the lightweight low-pressure system, so it is a bit of improving propulsive efficiency and lot about improving thermal efficiency,” Newby says. The lightweight fan and casing will have “a novel system of embedding harnesses and pipes in a composite ‘raft’ attached to the casing,” he adds. Other technologies will include a more advanced low-emissions combustor, lightweight compressor and turbine blade designs, improved blade cooling, dynamic sealing and adaptive cooling systems to optimize bleed off-take cycles. It will also feature new hybrid ceramic bearings to support the lighter core in positions farther aft in cooler, more benign locations, away from hotter locations faced by current bearings. 
Key technologies for UltraFan will build on the Advance developments in some cases and in others—such as the power gearbox, variable pitch blades and variable area nozzle—will be all-new. UltraFan will also have a new form of fully integrated, slim-line nacelle design. As the fan system is designed to vary pitch in all phases of flight, including landing, the nacelle will not include a thrust reverser. UltraFan will have a multi-stage IP turbine, the blades of which will be longer than any previous design. To reduce weight, titanium aluminide will be used for rotating parts and ceramic matrix composites (CMC) for static parts such as nozzles. 
Some potential technology elements “may be longer-term and may not be in the UltraFan when we take it to market,” says Newby, citing cooled cooling air and “blings” (bladed rings) as examples. An actively controlled cooled cooling-air system holds the potential to enable higher pressure cycles and turbine exit temperatures because it not only removes bleed air at a later stage, but it reinjects significantly cooler air back into the turbine blades, stator vanes, rotor disk and possibly liners. The system works by taking bleed air from the back of the compressor, passing it through a heat exchanger system linked to the bypass duct, and routing it into the turbine section. Testing of basic cooled cooling-air systems has been undertaken as part of the European Newac program.

Blings are “the next evolution from blisks [bladed disks] today and this takes it further,” Newby says. The bling eliminates the need for a deeper ring by having a very strong, potentially reinforced metal-matrix ring with integral blades formed on the outside.
Validation of the composite fan for Advance is underway as part of the ALPS (Advanced Low-Pressure System) program. The new fan set has been mounted on a pair of Trent 1000 engines in a straight swap for the original hollow titanium fan. Following initial sea-level testing here, one ALPS test engine has been shipped to Rolls-Royce’s site at Stennis Space Center, Mississippi, for crosswind evaluation. A second engine is being readied for flight tests later this quarter on the company Boeing 747-200 flying testbed in Tucson, Arizona. “That’s really a final check to make sure there is nothing in terms of flight loads that we haven’t spotted in sea-level testing. We wanted to do the Stennis testing first to make sure we understand its behavior,” Newby says.
The projected weight savings of 750 lb. per engine from adopting the new material is “well worth having,” he adds. Although GE has been using composite fans on its large engines since the 1990s, Rolls said its hollow titanium blades have remained competitive. However, with increasing fan diameters, “the time is right because the manufacturing technology allows us to get the thickness [of a composite blade] right down,” says Newby.
More substantial tests of the Advance core technology at full engine scale are also planned using a Trent XWB donor engine. “We will take the HP and IP spool out of an XWB and replace it with an Advance core architecture,” Newby says. He notes that the “Stage 1” exit from concept definition is finished and design freeze is the next step. “We have already got the disk forgings in, and we are starting to machine those. We are looking at different supply chain options to get bits in quickly, and our plan is to run the first build by the end of next year and run a further build [for endurance testing] in 2016,” he adds. “A team has been created and it has got that buzz about it like a new project. It is quite exciting.”

The new core section will incorporate a four-stage IP compressor and 10-stage HP compressor for the testing, though Newby cautions that this “may or may not be the final production configuration,” adding: “It’s not just about the aerodynamics; it’s about how you bring it together as a system. It is those things we want to check as well as the basic aerodynamics.” The only stage counts that are guaranteed to carry through to the production standard will be the test unit’s single-stage IP and two-stage HP turbines.
The higher pressure ratios planned for Advance and UltraFan mean higher operating temperatures and increased generation of nitrous oxides. Several key technologies for coping with these—and to reduce fuel burn and emissions—will be validated during continuing runs of Rolls’s long-running Environmentally Friendly Engine (EFE) test unit. First run in 2010, the fourth build of the Trent 1000-based EFE recently completed a new series of evaluations of high-temperature-capable advanced turbine materials and a lean-burn combustor design. EFE was used to test CMC high-pressure turbine blade tracks in 2013 and more recently evaluated CMC shroud segments. Testing will continue through 2015, Newby says.
Trials of a robust lean-burn combustion system have “gone really well,” says Newby. “We have done rig and core engine testing and will run another Trent 1000 with a new combustion module. We’ve done the chemistry in the rigs and we know it works, so this is about putting into a systems environment to see how it behaves on relight, altitude relight, pull-away and when you put water down it. Again like ALPS, this Advanced Lean Combustion System (Alecsys) and EFE are all full-scale Trent 1000s, and Advance will be XWB.” Together with earlier work conducted in Germany under the European Clean Sky 1 research program and Alecsys, “we know this gives us good margin to the [emission regulations] CAEP 6 and 8, and gives us confidence we can meet targets even with more aggressive cycles,” Newby says. “So this allows us to grow these cycles and improve emissions which tend to go in the opposite direction.” Following ground tests, Rolls plans to flight-test the new combustor in 2015 on the company’s 747 flying testbed.
In readiness for UltraFan, Rolls is building a €65 million ($87 million) research and development facility in Dahlewitz, Germany, for testing power gearboxes. “This is a big program,” says Newby. “It will take the Advance core, which we are laying down through the XWB, and wrap a new low-pressure system around it. This will be one of the main parts of the Clean Sky 2 program and is partially funded through both U.K. and German national programs,” he adds. Although Rolls acknowledges the UltraFan gear will be a form of planetary device, it is reluctant to divulge more details. “We have a clear idea of what the baseline is, and we think we know what the right answer is; we just have to validate it. The gear ratio will be around 3:1, if not probably a bit more.” The rig will be adaptable to various engine sizes and capable of testing gear units and associated oil systems at various angles and attitudes. Power gearbox testing is scheduled to run through the end of 2015, with component testing running beyond that. 

Featured post

A body has been found in a Lufthansa A340’s landing gear at Frankfurt airport

  A dead body has been found in the undercarriage of a Lufthansa aircraft that arrived at #Frankfurt airport from Tehran. German newspaper B...